Decomposing Thick Subcategories of the Stable Module Category

نویسنده

  • HENNING KRAUSE
چکیده

Let mod kG be the stable category of finitely generated modular representations of a finite group G over a field k. We prove a Krull-Remak-Schmidt theorem for thick subcategories of mod kG. It is shown that every thick tensor-ideal C of mod kG (i.e. a thick subcategory which is a tensor ideal) has a (usually infinite) unique decomposition C = ∐ i∈I Ci into indecomposable thick tensor-ideals. This decomposition follows from a decomposition of the corresponding idempotent kG-module EC into indecomposable modules. If C = CW is the thick tensor-ideal corresponding to a closed homogeneous subvariety W of the maximal ideal spectrum of the cohomology ring H∗(G, k), then the decomposition of C reflects the decomposition W = ⋃n i=1Wi of W into connected components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krull-schmidt Decompositions for Thick Subcategories

Following Krause [Kra99], we prove Krull-Schmidt theorems for thick subcategories of various triangulated categories: derived categories of rings, noetherian stable homotopy categories, stable module categories over Hopf algebras, and the stable homotopy category of spectra. In all these categories, it is shown that the thick ideals of small objects decompose uniquely into indecomposable thick ...

متن کامل

Classifying Thick Subcategories of the Stable Category of Cohen-macaulay Modules

Various classification theorems of thick subcategories of a triangulated category have been obtained in many areas of mathematics. In this paper, as a higher dimensional version of the classification theorem of thick subcategories of the stable category of finitely generated representations of a finite p-group due to Benson, Carlson and Rickard, we consider classifying thick subcategories of th...

متن کامل

Fakultät für Elektrotechnik , Informatik und Mathematik Subcategories of Triangulated Categories and the Smashing Conjecture

In this thesis the global structure of three classes of algebraic triangulated categories is investigated by describing their thick, localizing and smashing subcategories and by analyzing the Smashing Conjecture. We show that the Smashing Conjecture for the stable module category of a self-injective artin algebra A is equivalent to the statement that a class of model categories associated with ...

متن کامل

Stratifying Modular Representations of Finite Groups

We classify localising subcategories of the stable module category of a finite group that are closed under tensor product with simple (or, equivalently all) modules. One application is a proof of the telescope conjecture in this context. Others include new proofs of the tensor product theorem and of the classification of thick subcategories of the finitely generated modules which avoid the use ...

متن کامل

Classifying Subcategories of Modules over a Commutative Noetherian Ring

Abstract. Let R be a quotient ring of a commutative coherent regular ring by a finitely generated ideal. Hovey gave a bijection between the set of coherent subcategories of the category of finitely presented R-modules and the set of thick subcategories of the derived category of perfect R-complexes. Using this isomorphism, he proved that every coherent subcategory of finitely presented R-module...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999